网上有关“三角学的起源”话题很是火热,小编也是针对三角学的起源寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
三角学起源于古希腊,为了预报天体运行路线、计算日历、航海等需要,古希腊人已研究球面三角形的边角关系,掌握了球面三角形两边之和大于第三边,球面三角形内角之和大于两个直角,等边对等角等定理。
泰勒斯(公元前624年-公元前546年)的理论可以认为是三角学的萌芽,印度人和阿拉伯人对三角学也有研究和推进,但主要是应用在天文学方面。15、16世纪三角学的研究转入平面三角,以达到测量上应用的目的。16世纪法国数学家韦达系统地研究了平面三角。他出版了应用于三角形的数学定律的书。此后,平面三角从天文学中分离出来,成了一个独立的分支。平面三角学的内容主要有三角函数、解三角形和三角方程。
三角测量在中国也很早出现,公元前一百多年的《周髀算经》就有较详细的说明,例如它的首章记录“周公曰,大哉言数,请问用矩之道。商高曰,平矩以正绳,偃矩以望高,复矩以测深,卧矩以知远。”(商高说的矩就是今天工人用的两边互相垂直的曲尺,商高说的大意是将曲尺置于不同的位置可以测目标物的高度、深度与广度)1世纪时的《九章算术》中有专门研究测量问题的篇章.
明代末年,由于历法改革的需要,西学东渐中陆续引进了几何学、三角学等西方数学。这项工作仍在清朝继续进行,其中最重要的是由波兰传教士穆尼阁和薛凤祚所介绍的对数方法。薛凤祚所著《历学会通》的数学部分主要是传自穆尼阁的《比例对数表》(1653年)、《比例四线新表》和《三角算法》等各一卷。《比例对数表》和《比例四线新表》分别给出了1~10000的六位对数表和六位三角函数(正弦、余弦、正切、余切)对数表。书中把今天所说的“对数”称为“比例数”或“假数”,并简单解释了把乘除运算化为加减运算的道理。这是对数方法在中国的首次介绍。对数是17世纪最重要的发现之一,它有效地简化了繁重的计算工作。在对数、解析几何和微积分这三种当时西方最重要的数学方法中,也只有对数比较及时地传入了中国。《三角算法》所介绍的平面三角和球面三角知识,比《崇祯历书》中有关三角学的内容更丰富一些。如平面三角中包含有正弦定理、余弦定理、正切定理和半角定理等,且多是运用三角函数的对数进行计算。球面三角中增加半角公式、半弧公式、达朗贝尔公式和纳皮尔公式等。
cos是什么意思?
勾股定理是一个基本几何定理,是人类早期发现并证明的重要数学定理之一,是用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。
世界上几个文明古国如古巴比伦、古埃及都先后研究过这条定理。我国是最早了解勾股定理的国家之一,被称为“商高定理”。
成书于公元前1世纪的我国最古老的天文学著作《周髀算经》中,记载了周武王的大臣周公询问皇家数学家商高的话,其中就有勾股定理的内容。
这段话的内容是,周公问:“我听说你对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么关于天的高度和地面的一些测量的数据是怎么样得到的呢?”
商高说:“数的产生来源于对圆和方这些图形的认识。其中有一条原理:当直角三角形‘矩’得到的一条直角边‘勾’等于3,另一条直角边‘股’等于4的时候,那么,它的斜边‘弦’就必定是5。”
这段对话,是我国古籍中“勾三、股四、弦五”的最早记载。
用现在的数学语言来表述就是:在任何一个不等腰的直角三角形中,两条直角边的长度的平方和等于斜边长度的平方。也可以理解成两个长边的平方之差与最短边的平方相等。
基于上述渊源,我国学者一般把此定理叫作“勾股定理”或“商高定理”。
商高没有解答勾股定理的具体内容,不过周公的后人陈子曾经运用他所理解的太阳和大地知识,运用勾股定理测日影,以确定太阳的高度。这是我国古代人民利用勾股定理在科学上进行的实践。
周公的后人陈子也成了一个数学家,是他详细地讲述了测量太阳高度的全套方案。这位陈子是当时的数学权威,《周髀算经》这本书,除了最前面一节提到商高以外,剩下的部分说的都是陈子的事。
据《周髀算经》说,陈子等人的确以勾股定理为工具,求得了太阳与镐京之间的距离。为了达到这个目的,他还用了其他一系列的测量方法。
陈子用一只长8尺,直径0.1尺的空心竹筒来观察太阳,让太阳恰好装满竹筒的圆孔,这时候太阳的直径与它到观察者之间距离的比例正好是竹筒直径和长度的比例,即1比80。
经过诸如此类的测量和计算,陈子和他的科研小组测得日下60000里,日高80000里,根据勾股定理,求得斜至日整10万里。这个答案现在看来当然是错的。但在当时,陈子对他的方案充分信心。他进一步阐述这个方案:
在夏至或者冬至这一天的正午,立一根8尺高的竿来测量日影,根据实测,正南1000里的地方,日影1.5尺,正北1000里的地方,日影1.7尺。这是实测,下面就是推理了。
越往北去,日影会越来越长,总有一个地方,日影的长会正好是6尺,这样,测竿高8尺,日影长6尺,日影的端点到测竿的端点,正好是10尺,是一个完美的“勾三股四弦五”的直角三角形。
这时候的太阳和地面,正好是这个直角三角形放大若干倍的相似形,而根据刚才实测数据来说,南北移动1000里,日影的长短变化是>0.1尺,那由此往南60000里,测得的日影就该是零。也就是说从这个测点到“日下”,太阳的正下方,正好是60000里,于是推得日高80000里,斜至日整10万里。接下来,陈子又讲天有多高地有多大,太阳一天行几度,在他那儿都有答案。
陈子根本没有想到这一切都是错的。他要是知道他脚下大得没边的大地,只不过是一个小小的寰球,体积是太阳的一百三十万分之一,就像飘在空中的一粒尘土,真不知道他会是什么表情。
书的最后陈子说:一年有365天4分日之一,有12月19分月之7,一月有29天940分日之499。这个认识,有零有整,而且基本上是对的。现在大家都知道一年有365天,好像不算是什么学问,但在那个时代,陈子的学问不是那么简单的,虽然他不是全对。
勾股定理的应用,在我国战国时期另一部古籍《路史后记十二注》中也有记载:大禹为了治理洪水,使不决流江河,根据地势高低,决定水流走向,因势利导,使洪水注入海中,不再有大水漫溢的灾害,也是应用勾股定理的结果。
勾股定理在几何学中的应用非常广泛,较早的案例有《九章算术》中的一题:有一个正方形的池塘,池塘的边长为1丈,有一棵芦苇生长在池塘的正中央,并且芦苇高出水面部分有1尺,如果把芦苇拉向岸边则恰好碰到岸沿,问水深和芦苇的高度各多少?
这是一道很古老的问题,《九章算术》给出的答案是“12尺”、“13尺”。这是用勾股定理算出的结果。
汉代的数学家赵君卿,在注《周髀算经》时,附了一个图来证明“商高定理”。这个证明是400多种“商高定理”的证明中最简单和最巧妙的。外国人用同样的方法来证明的,最早是印度数学家巴斯卡拉?阿查雅,那是1150年的时候,可是比赵君卿还晚了1000年。
东汉初年,根据西汉和西汉时期以前数学知识积累而编纂的一部数学著作《九章算术》里面,有一章就是讲“商高定理”在生产事业上的应用。
直至清代才有华蘅芳、李锐、项名达、梅文鼎等创立了这个定理的几种巧妙的证明。
勾股定理是人们认识宇宙中形的规律的起点,在东西方文明起源过程中,有着很多动人的故事。
我国古代数学著作《九章算术》的第九章即为勾股术,并且整体上呈现出明确的算法和应用性特点,表明已懂得利用一些特殊的直角三角形来切割方形的石块,从事建筑庙宇、城墙等。
为什么“毕达哥拉斯定理”又称为“勾股定理”?
cos是指余弦,三角函数的一种。
余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°(如图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
扩展资料:
余弦函数的定义域是整个实数集,值域是[-1,1]。它是周期函数,其最小正周期为2π。在自变量为2kπ(k为整数)时,该函数有极大值1;在自变量为(2k+1)π时,该函数有极小值-1。余弦函数是偶函数,其图像关于y轴对称。
利用余弦定理,可以解决以下两类有关三角形的问题:
(1)已知三边,求三个角;
(2)已知两边和它们的夹角,求第三边和其他两个角。
勾股定理是一个初等几何定理,是人类早期发现并证明的重要数学定理之一,用代数思想解决几何问题的最重要的工具之一,也是数形结合的纽带之一。勾股定理是余弦定理的一个特例。勾股定理约有400种证明方法,是数学定理中证明方法最多的定理之一。“勾三股四弦五”是勾股定理最基本的公式。勾股数组方程a2 + b2 = c2的正整数组(a,b,c)。(3,4,5)就是勾股数。也就是说,设直角三角形两直角边为a和b,斜边为c,那么a2+b2=c2 。
毕达哥拉斯定理是一个基本的几何定理,传统上认为是由古希腊的毕达哥拉斯所证明。在中国,《周髀算经》记载了勾股定理的公式与证明,相传是在商代由商高发现,故又有称之为商高定理,三国时代的赵爽对《周髀算经》内的勾股定理作出了详细注释,又给出了另外一个证明。埃及称为埃及三角形。
早在毕达哥拉斯之前,许多民族已经发现了这个事实,而且古巴比伦、古埃及、古中国、古印度等的发现都有真凭实据,有案可查。相反,毕达哥拉斯的著作却什么也没有留传下来,关于他的种种传说都是后人辗转传播的。可以说真伪难辨。这个现象的确不太公平,之所以这样,是因为现代的数学和科学来源于西方,而西方的数学及科学又来源于古希腊,古希腊流传下来的最古老的著作是欧几里得的《几何原本》,而其中许多定理再往前追溯,自然就落在毕达哥拉斯的头上。他常常被推崇为“数论的始祖”,而在他之前的泰勒斯被称为“几何的始祖”,西方的科学史一般就上溯到此为止了。至于希腊科学的起源只是近一二百年才有更深入的研究。因此,毕达哥拉斯定理这个名称一时半会儿改不了。不过,在中国,因为我们的老祖宗也研究过这个问题,因此称为商高定理,而更普遍地则称为勾股定理。中国古代把直角三角形中较短的直角边叫做勾,较长的直角边叫做股,斜边叫做弦。
古埃及人用这样的方法画直角勾股定理,是几何学中一颗光彩夺目的明珠,被称为“几何学的基石”,而且在高等数学和其他学科中也有着极为广泛的应用。正因为这样,世界上几个文明古国都已发现并且进行了广泛深入的研究,因此有许多名称。
中国是发现和研究勾股定理最古老的国家之一。中国古代数学家称直角三角形为勾股形,较短的直角边称为勾,另一直角边称为股,斜边称为弦,所以勾股定理也称为勾股弦定理。在公元前1000多年,据记载,商高(约公元前1120年)答周公曰“故折矩,以为句广三,股修四,径隅五。既方之,外半其一矩,环而共盘,得成三四五。两矩共长二十有五,是谓积矩。”因此,勾股定理在中国又称“商高定理”。在公元前7至6世纪一中国学者陈子,曾经给出过任意直角三角形的三边关系即“以日下为勾,日高为股,勾、股各乘并开方除之得邪至日。
还有的国家称勾股定理为“平方定理”。
关于“三角学的起源”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!
本文来自作者[曲豪]投稿,不代表博晟号立场,如若转载,请注明出处:https://www.xcbsedu.cn/zlan/202602-9017.html
评论列表(3条)
我是博晟号的签约作者“曲豪”
本文概览:网上有关“三角学的起源”话题很是火热,小编也是针对三角学的起源寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。三角学起源于古希腊,为了预...
文章不错《三角学的起源》内容很有帮助